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ABSTRACT
DPOP is an algorithm for distributed constraint optimization which
has, as main drawback, the exponential size of some of its mes-
sages. Recently, some algorithms for distributed cluster tree elimi-
nation have been proposed. They also suffer from exponential size
messages. However, using the strategy of cost function filtering,
in practice these algorithms obtain important reductions in maxi-
mum message size and total communication cost. In this paper,
we explain the relation between DPOP and these algorithms, and
show how cost function filtering can be combined with DPOP. We
present experimental evidence of the benefits of this new approach.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Search

General Terms
Algorithms

Keywords
distributed constraint optimization, agent coordination

1. INTRODUCTION
In the last years, there is an increasing interest for distributed prob-
lem solving. When several agents related by constraints look for a
global consistent assignment satisfying every constraint, this prob-
lem can be seen as distributed constraint reasoning, where each
agent owns a part of the instance but no agent knows the whole in-
stance. Agents want to achieve a global consistent solution without
joining all information into a single agent. New solving algorithms
have been developed for this distributed model, where communica-
tion between agents is done by message passing. As examples of
algorithms for distributed constraint reasoning, we mention ABT
[16], ADOPT [7], DPOP [9]. As examples of problems requiring
distributed solving, we mention –among many others– distributed
meeting scheduling [14] and sensor networks [1].

Considering distributed constraint optimization, the DPOP algo-
rithm [9] represents a useful step forward to distributedly compute
the global optimum. Its main drawback is the exponential complex-

ity of its UTIL messages, which could reach size Θ(dw∗
), where

d is the maximum domain size and w∗ is the induced width of
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the DFS tree used. Independently, some algorithms for distributed
cluster-tree elimination (DCTE) [2] have been developed. They
suffer from the same kind of exponentially large messages. In prac-
tice, using the cost function filtering strategy, these algorithms have
greatly reduced the maximum message size. In this paper, we an-
alyze the relation of DPOP with DCTE, and we show that the cost
function filtering strategy can also be applied in the DPOP con-
text, producing a new algorithm BT-IDPOPf. Experimental results
show that BT-IDPOPf achieves substantial reductions in maximum
message size and total data exchanged with respect to the original
DPOP, especially for medium and high values of w∗. BT-IDPOPf
is an anytime algorithm able to provide better solutions as the run-
ning time increases, until eventually computing the optimum.

The paper is organized as follows. In section 2, we provide
a summary of existing dynamic programming approaches for the
centralized and distributed cases. In section 3, we show that DPOP
can be seen as a part of DCTE. From this fact, we combine DPOP
with cost function filtering, producing the new algorithm BT-IDPOPf
in section 4. We provide an example of its execution in section 5.
BT-IDPOPf is evaluated empirically in section 6, showing impor-
tant benefits compared to DPOP. Finally, we conclude in section 7.
For space reasons, theorem proofs have been removed.

2. PRELIMINARIES

2.1 Centralized COPs
In a centralized setting, a Constraint Optimization Problem (COP)

involves a finite set of variables, each taking a value in a finite do-
main. Variables are related by cost functions that specify the cost
of value tuples on some variable subsets. Costs are positive natural
numbers (including 0 and ∞). A finite COP is (X, D, C) where,

• X = {x1, . . . , xn} is a set of n variables;

• D = {D(x1), . . . , D(xn)} is a collection of finite domains;
D(xi) is the set of xi possible values;

• C is a set of cost functions; fV ∈ C on the ordered set of
variables V = (xi1 , . . . , xir ) (called its scope) specifies the
cost of every combination of values of variables of V , that
is, fV :

Q
xj∈V D(xj) �→ N . The arity of fV is |V |. The

scope of a cost function f ∈ C is also written var(f).

The overall cost of a complete tuple (involving all variables) is
the addition of all individual cost functions on that particular tuple.
A solution is a complete tuple with an overall cost lower than a
threshold provided by the user. It is optimal if its overall cost is
minimal.
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procedure BE(X, D, C)
for each i : n, . . . , 1 do

Bi ← {fV ∈ C|xi ∈ V };
gi ← (

P
fV ∈Bi

fV )[−xi];

X ← X − {xi};
C ← (C ∪ {gi}) − Bi;

Figure 1: The BE algorithm.

An assignment or tuple tS with scope S is an ordered sequence
of values, each corresponding to a variable of S ⊆ X . The projec-
tion of tS on a subset of variables T ⊂ S, written tS [T ], is formed
from tS by removing the values of variables that do not appear in
T . This idea can be extended to cost functions: the projection of
fV on T ⊂ V , is a new cost function fV [T ] formed by the tuples
of fV removing the values of variables that do not appear in T ,
removing duplicates and keeping the minimum cost of the original
tuples in fV . The concatenation of two tuples tS and t′T , written
tS · t′T , is a new tuple with scope S ∪ T , formed by the values
appearing in tS and t′T . This concatenation is only defined when
common variables have the same values in tS and t′T . The cost of
a tuple tX (involving all variables) is

P
f∈C f(tX), that is, the ad-

dition of the individual cost functions evaluated on tX (implicitly,
it is assumed that, for each f ∈ C, f(tX) = f(tX [var(f)])). We
define two operations on functions,

1. Projecting out a variable x ∈ V from fV , denoted fV [−x],
is a new function with scope V − {x} defined as projecting
fV on V − {x}, fV [−x] = fV [V − {x}].

2. Summing two functions fV and gW is a new function f + g
with scope V ∪ W and ∀t ∈ Q

xi∈V Di, ∀t′ ∈ Q
xj∈W Dj

s.t. t · t′ is defined, (f + g)V ∪W (t · t′) = fV (t) + gW (t′).

We say that function g is a lower bound of f , denoted g ≤ f , if
var(g) ⊆ var(f) and for all possible tuples t of f , g(t) ≤ f(t).
A set of functions G is a lower bound of f iff (

P
g∈G g) ≤ f . It is

easy to check that for any f, Y ⊂ var(f), f [Y ] is a lower bound
of f , and

P
f∈F f [Y ] ≤ (

P
f∈F f)[Y ].

The primal graph G of a COP is a graph where each node rep-
resents a variable and there exists a link between two nodes if the
corresponding variables appear together in the scope of at least one
cost function. Given an ordering d of variables, the induced graph
G∗ is computed as follows: (i) it is initialized with G and (ii) vari-
ables are processed from last to first: if the ancestors of variable
x (variables connected with x and previous to x in the ordering d)
are not connected in G∗, new links connecting them are added [3].
The width of a node x in G∗ along the ordering d is the number
of variables connected with x in G∗ and previous to it in d. The
induced width w∗ of G is the maximum width of all nodes of G∗

along the ordering d.

Bucket Elimination (BE). COPs can be solved by the bucket elim-
ination algorithm (BE) [3], that appears in Figure 1. Given a COP
(X, D, C) and an ordering d = {x1, x2, . . . , xn}, BE processes
variables from last to first. When processing variable xi, it builds
the bucket Bi as the set of all cost functions (original and produced
during processing other variables after xi along d) for which xi is
the highest variable in its scope. A new cost function gi is com-
puted, by adding cost functions in Bi and projecting out xi. Cost
function gi replaces the bucket Bi in C and xi is eliminated from
X . This process is repeated n times, eliminating one variable per
iteration, until all variables have been processed.

procedure CTE(T = (V, E), χ, ψ)
for each (u, v) ∈ E s.t. all m(i,u), i �= v have arrived do

B ← ψ(u) ∪ {m(i,u) | (i, u) ∈ E, i �= v};
m(u,v) ← (

P
f∈B f)[sep(u, v)];

send m(u,v) to v;

Figure 2: The CTE algorithm.

After BE, an optimal solution is computed processing variables
from first to last. Variable xi takes the Di value that is the best
extension of x1, ..., xi−1 with respect to Bi.

Cluster Tree Elimination (CTE). A tree decomposition (TD) of a
COP (X, D, C) is a triple (T, χ, ψ), where T = (V, E) is a tree, χ
and ψ are labeling functions which associate with each node v ∈ V
two sets, χ(v) ⊆ X and ψ(v) ⊆ C such that

• for each f ∈ C, there is exactly one node v ∈ V s. t.
f ∈ ψ(v); var(f) ⊆ χ(v);

• for each x ∈ X , the set {v ∈ V |x ∈ χ(v)} induces a con-
nected subtree of T .

Its tree-width is tw = maxv∈V |χ(v)|. If u and v are adjacent
nodes, its separator is sep(u, v) = χ(u) ∩ χ(v). The maximum
separator size of the TD is s. Finding the TD with the smallest tree
width is NP-hard [3].

A COP formulated as a TD can be solved by the cluster tree elim-
ination (CTE) algorithm, which appears in Figure 2. CTE sends
messages along TD edges [4]. Edge (u, v) ∈ E has associated
two CTE messages m(u,v), from u to v, and m(v,u), from v to
u. m(u,v) is a function computed summing all functions in ψ(v)
with all incoming CTE messages except from m(v,u) and projected
on sep(u, v). Its approximate version, MCTE(r), limits by r the
maximum arity of new computed functions.

CTE can also be seen as a two phase algorithm. In the first phase,
starting from the leaves, each leaf node sends message m to its par-
ent, which in turn receives all messages from its children, performs
the necessary computation and sends a message to its parent. This
phase terminates when the information reaches the root. In the sec-
ond phase, the root computes the CTE messages to be sent to its
children. Upon reception, each child performs the same process,
which terminates when messages reach tree leaves.

After CTE, the optimum of variables in χ(u) is computed opti-
mizing ψ(u) ∪ {m(v,u)|v ∈ neighbors(u)}, assigning the same
value to variables that appear in more than one node of the TD.

2.2 Distributed COPs
Moving into a distributed context, a Distributed Constraint Opti-

mization Problem (DCOP), is a COP where variables, domains and
cost functions are distributed among automated agents. A variable-
based (resp. cost-function-based) DCOP is a 5-tuple (X , D, C, A,
α) (resp. β), where X , D, C define a COP, A is a set of p agents
and α maps each variable to one agent (resp. β maps each cost
function to one agent).

DCOPs can be solved either using distributed search or by us-
ing distributed inference. About distributed search we mention the
reference algorithm ADOPT [7] and their improved versions BnB-
ADOPT [15] and ADOPT-ng [13]. About distributed inference, we
mention DPOP [9] and DCTE [2]. In the following these two algo-
rithms are summarized (for a more complete description the reader
should consult the original sources).
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Distributed Cluster Tree Elimination (DCTE). Distributed clus-
ter tree elimination algorithms have been proposed in [2], working
on a tree decomposition (TD). A TD can be built in a distributed
form using the ERP algorithm [?]. A generic agent self is a node in
the TD, it owns variables in χ(self ) and cost functions in ψ(self ).
It also knows the separators with its parent and children in the TD.

Basic DCTE works as follows. In the first place, self communi-
cates with its neighbors with CF messages, that contain cost func-
tions computed as in the centralized case and following the same
communication strategy (each arc (u, v) of the tree has associated
two messages, one from u to v and other from v to u). When all
these messages have been exchanged, cluster(self ) is a set of cost
functions formed by ψ(self ) and the cost functions received from
its neighbors. Minimizing cluster(self ), each agent obtains the
global minimum and a tuple that is part of a global tuple of opti-
mum cost. Secondly, to assure that common variables to several
agents take the same value, SS messages are used, from root to
leaves. Each SS message contains the optimal values of variables
in χ(self ) which should be maintained by its children.

DMCTE(r) is its approximated version, when the arity of cost
functions in CF messages is bounded by r. Differently from DCTE,
there is no guarantee that DMCTE(r) will find the global optimum.
This algorithm returns an interval [LB ,UB ] where LB and UB are
lower and upper bounds of the optimum cost, respectively.

Dynamic Programming Optimization Protocol (DPOP). DPOP
works on a DFS-tree arrangement of the constraint graph. Given
a graph G(V, A), a rooted DFS-tree is a triple (V, E,PE) where
E (edges)∪PE (pseudoedges) = A (arcs of G), E ∩ PE = φ
and (V, E) forms a rooted tree. Nodes in different branches of
the DFS-tree (a special case of pseudotree) have no links between
them. There are distributed algorithms to compute the DFS-tree.
Its induced width w∗ is the induced width of the original constraint
graph, assuming a depth-first order traversal of the DFS-tree [9].

DPOP performs three phases in sequence: (1) DFS phase. An
agent is selected as root (for instance, by a leader election process).
From this agent, a distributed DFS traversal of the constraint graph
is started. At the end, each agent labels its neighbors as parents,
pseudoparents, children or pseudochildren. (2) UTIL phase. Each
agent (starting from leaves) sends a UTIL message to its parent,
that contain an aggregated cost function computed adding received
UTIL messages from its children with its own cost functions with
parent and pseudoparents. The sent cost function does not contain
the agent’s variable, which is projected out. (3) VALUE phase.
Each agent determines its optimal value using the cost function
computed in phase 2 and the VALUE message received from its
parent. Then, it informs its children using VALUE messages. The
agent at the root starts this phase. In DPOP, UTIL and VALUE mes-
sages play the same role as CF and SS messages in DCTE.

We identify each phase as DPOP(phase). We focus on DPOP(util),
which is the phase responsible for using exponentially large mes-
sages. DPOP(dfs) is a preprocess to compute the DFS-tree arrange-
ment, while DPOP(value) is a one-pass process from root to leaves,
with the best assignments for variables in early levels of the DFS-
tree. Both require a polynomial number of linear size messages.

Originally DPOP considers that agents have utilities associated
with value tuples, so an optimal solution is the tuple that maxi-
mizes the overall utility. In this paper, we consider that agents have
costs associated with value tuples, so an optimal solution is the
tuple that minimizes the overall cost. Keeping this in mind, and
for homogeneity with DCTE, in the following we consider that in
the UTIL phase DPOP agents exchange CF messages and in the
VALUE phase DPOP agents exchange SS messages.

3. RELATION BETWEEN DPOP AND DCTE
In this section we study the relations between dynamic program-

ming algorithms in the centralized and distributed cases. A sum-
mary of such relations appears in Figure 3.

3.1 DPOP(util) and BE
We can see that DPOP(util) performs the same process as BE

in the centralized case, when BE uses an ordering related to the
DFS-tree used by DPOP.

Given a rooted DFS-tree, we define its depth-first order as the
linear sequence of tree nodes in which they would be first visited
by depth-first search (also known as the preorder listing). DPOP
on the rooted DFS-tree performs the same kind of computation as
BE in the constraint graph with the depth-first order of the rooted
DFS-tree, as stated in the next result.

THEOREM 1. Given a rooted DFS-tree, where DPOP operates.
When DPOP(util) processes variable xi, it computes the same cost
function and sends it to the same node as BE when it processes xi

along the depth-first order of the rooted DFS-tree.

3.2 BE and CTE
In the centralized case, the relation between BE and CTE has

been widely studied by Dechter and colleagues [4, 3, 5]. In short,
BE can be seen as a part of CTE working on the bucket tree, a
particular tree decomposition. In the following, we summarize the
main steps to achieve this conclusion.

Following [3], we define the bucket tree (BT) of the induced
graph G∗ along the ordering d = {x1, x2, . . . , xn} of a COP in-
stance as the tuple (T = (V, E), χ, ψ), where

• there is a node in V per bucket Bj ; in total V has n nodes;

• there is an edge in E from Bi to Bj (Bi is parent of Bj) iff
xi is the closest ancestor of xj in G∗ along the ordering d;

• the set χ(Bj) is composed of xj and all its previous neigh-
bors in G∗ along the ordering d;

• the set ψ(Bj) is composed of all cost functions with xj as
the highest variable in its scope.

The size of the largest separator s of the BT is the induced width
w∗ of G∗ [3] (we use them interchangeably in the BT). It can be
proved [3], that this BT is a legal TD, so it can be processed by
CTE. Keeping the view of CTE as two phase algorithm, we can
prove that BE on d is equivalent to the 1st phase of CTE.

BE CTE 

DPOP(util) DCTE 

part-of 

part-of 

BE

DP

TE

CT

corresponds corresponds 

distributed case 

centralized case 

Figure 3: Relations between centralized/distributed dynamic
programming algorithms.
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THEOREM 2. (from [3]) When BE processes variable x along
the ordering d, it computes the same cost function as CTE(phase
1) when processing Bx. CTE(phase 1) sends this function to the
bucket of the variable to which BE sends the function.

3.3 CTE and DCTE
DCTE [2] mimics the behavior of CTE in the distributed case.

Both work on a TD of the considered instance, which can be com-
puted in centralized or distributed form. CTE is a message-passing
algorithm, and its extension to the distributed case is as follows:
DCTE uses CF messages (that play the same role as m messages in
CTE), and SS messages, to propagate the solution chosen by agents
at higher levels of the TD to agents in lower levels (SS messages
are not needed in the centralized case because all the information
is accessible to CTE, executed in a single computer).

Its approximate version, DMCTE(r), is closely related to the
centralized MCTE(r) with this difference: while MCTE(r) limits
the arity of new cost functions computed in a TD node, DMCTE(r)
limits the size of messages sent by this node. DMCTE(r) also
uses BB messages, to compute and propagate the lower and upper
bounds in the TD. For a detailed description of DCTE-based algo-
rithms, see [2].

Cost function filtering was originally proposed for the central-
ized case [12], and its extension to the distributed case appears in
[2], jointly with its usage inside DCTE-based algorithms. It is de-
scribed in detail in section 4.1.

3.4 DPOP(util) and DCTE
As BE can be seen as a part of CTE in the centralized case,

DPOP(util) can be seen as a part of DCTE in the distributed case
(since DPOP(util) performs the same process as BE in the central-
ized case, BE is part of CTE and CTE performs the same process as
DCTE in the distributed case). In the following, we formally prove
that DPOP can be seen as a part of DCTE.

Given a rooted DFS-tree, we have defined the depth-first order
of its nodes. Given a node ordering, we have defined the BT (a TD
of this ordering with n nodes). So from the DFS-tree we define
the corresponding BT. Based on this we connect DPOP(util) with
DCTE, as stated next.

THEOREM 3. Given a rooted DFS-tree, where DPOP operates.
When DPOP(util) processes variable x, it computes the same cost
function as DCTE(1 phase) when it processes Bx. DCTE(phase 1)
sends this function to the bucket of the variable to which DPOP(util)
sends the function.

Given a DFS-tree computed in distributed form, can we built the
corresponding BT also in a distributed way? (or should we pass
through centralized formats?) Yes, BT can be built in distributed
form, and the procedure to do it appears below. From the DFS-tree,
we define the induced DFS*-tree as follows:

• nodes of the DFS-tree are processed per branch, in the order
from leaf to root;

• the process of node xi is as follows: for each pair xj , xk ∈
{parent(xi)} ∪ pseudoparents(xi) with xj higher in the
tree than xk, send a message to both asking that if xj is not
parent of xk, a pseudoedge connecting xj and xk should be
included (xj should be included in the pseudoparents of xk

and xk in the pseudochildren of xj).

From the DFS*-tree, we build the corresponding BT:

• there is one bucket per node of the DFS*-tree: variable xi

corresponds to Bi;

• the parent of Bi in the BT is the bucket corresponding to the
variable parent of xi in the DFS*-tree (which is the same as
in the DFS-tree);

• χ(Bi) is composed by the parent and pseudoparents of xi;

• ψ(Bi) is composed of all cost functions that xi has with its
parent and pseudoparents, such that xi is the last variable of
its scope in the branch of the DFS*-tree.

The whole process requires exchanging a linear number of constant
size messages. It is easy to see that this is the corresponding BT
(it follows the guidelines presented in section 3.2, replacing G∗

by DFS*-tree and ordering d by depth-first order). It is direct to
check that, given a DFS-tree, there is only one DFS*-tree and BT
associated with it.

4. DPOP + FUNCTION FILTERING
In practice, cost function filtering has provided substantial ben-

efits when used inside DCTE-based algorithms [2]. Given the re-
lation between DPOP and DCTE, we accommodate cost function
filtering inside DPOP.

4.1 Cost Function Filtering
The strategy of cost function filtering was proposed in [12] to

improve centralized COP solving. In the distributed context, its
usage has been proposed in [2] inside DCTE-based algorithms. The
basics of cost function filtering are as follows.

Let us consider a DCOP and a generic agent self which knows
a global upper bound UB on the maximum acceptable cost of any
solution. A cost function f is stored as a set containing all pairs
(t, f(t)) with cost less than UB . Imagine that self knows that cost
function f will be added (in the future) with cost function g, and
it also knows a set of functions G that is a lower bound of g. We

define the filtering of f from G, noted f
G

, as

f
G

(t) =

j
f(t) if (

P
h∈G h(t)) + f(t) < UB

UB otherwise

where f
G

(t) is the filtered cost of tuple t (by functions f and G).

THEOREM 4. Let f and g be two cost functions, var(g) ⊆ var(f),
and G a set of functions that is a lower bound of g. Filtering f with
G before adding f to g is equal to f + g,

f + g = f
G

+ g

Therefore, if self has to send cost function f to another agent, in-

stead of sending f it can send f
G

, which is smaller (or equal in the
worst case). The idea is not sending those elements of f which,
when added with g, will exceed UB so they will be removed from
further computation. Not sending them will allow us to save com-
munication effort, while keeping the correctness and complenetess
of the base algorithm on top of which cost function filtering is im-
plemented. This strategy also works with lower bounds of the exact
cost functions, as stated in the next result.

THEOREM 5. Let f and g be two cost functions, var(g) ⊆ var(f),
and G a set of functions that is a lower bound of g. Let fLB and
gLB be two lower bounds of f and g respectively. Then,

fLB
G

+ gLB ≤ f + g
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How does cost function filtering help in DCTE-based algorithms?
Let us consider two agents u and v, that exchange cost function
messages. The cost function from u to v will be added with other
cost functions of cluster(v) to compute the minimization. So any
of the functions that are already in cluster(v) can filter the cost
function from u to v (obviously before arriving at v). A similar situ-
ation happens in agent u with cost function from v. DMCTE(r) ex-
changes lower bounds of the exact cost functions and DMCTEf(r)
uses cost function filtering with these lower bounds. Expecting bet-
ter lower bounds the DIMCTEf algorithm has been proposed. It is
an iterative algorithm that executes DMCTEf(r) with increasing r,
using the CF message from u to v of iteration r− 1 as filter for the
CF message from v to u at iteration r [2].

4.2 New DPOP Versions
Since DPOP can be seen as part of DCTE-based algorithms, cost

function filtering can also be applied to DPOP, producing new al-
gorithms which are presented in this section. These algorithms
no longer work on the DFS-tree of original DPOP, but on the BT
defined by this DFS-tree, following the guidelines of section 3.4.
Now, an agent self is a node of the BT, which knows variables in
χ(self ) and cost functions in ψ(self ). It also knows its parent and
children nodes, with their corresponding separators.

The main difference of these algorithms with DCTE-based ones
is the ordering of CF messages: while in DCTE-based algorithms
agents send CF messages as soon as the sending condition holds, in
the new DPOP versions CF messages are sent in two phases: first,
from leaves to root, and second from root to leaves (of the BT).
In the first phase, an internal node has to wait until receiving CF
messages from all its children; in the second phase it has to wait
until receiving the CF message from its parent.

Ordering CF messages could seem a minor element in the algo-
rithm design. However, it is crucial to extract the maximum power
from cost function filtering. When the CF (u, v) message is sent
from the parent u to v (second phase), u has already received the
CF (v, u) message sent in the first phase (from v), so it can use
CF (v, u) to filter CF (u, v). In DIMCTEf, since messages are not
ordered, in iteration r a CF (u, v) message is filtered by the corre-
sponding CF (v, u) message of previous iteration r − 1.

The basic algorithm is BT-DPOP(r) (bucket tree DPOP(r)), which
appears in Figure 4. It is composed of the following phases (it is de-
scribed for a generic agent self, we assume that the BT has already
been built in a preprocessing step):

1. First phase: let B1
self be the set of all cost functions received

by self from its children union ψ(self ). B1
self is partitioned

in P1, P2, . . . , Pq classes, such that the function obtained
adding all cost functions of a class projected on the sepa-
rator sep(self , parent(self )) has arity lower than or equal
to r. The cost functions of each class are added, producing q
cost functions, which form a new CF message which is sent
to parent(self ).

2. Second phase: let u be a child of self and let B2
self be the set

of all cost functions received by self from its children except
u union ψ(self ) union the cost functions received from its
parent. B2

self is partitioned in P1, P2, . . . , Pq classes, such
that the function obtained adding all cost functions of a class,
projected over sep(self , u) has arity lower than or equal to
r. All cost functions of each class are added, producing q
cost functions, which form a new CF message which is sent
to u. A similar process is done for all children of self .

3. Third phase: it is DPOP(value) (it exchanges SS messages).

procedure BT-DPOP-1(T, χ, ψ, r, ub) /* CF messages up*/
thereIsSol ← false;
if self = leaf (T ) then ComputeSendFunction(self , parent(self ), r);
while ¬ (received one CF per children and sent one CF to parent) do
msg ← getMsg(); if (msg.type) = CF then NewCostFunction(msg, r);

procedure BT-DPOP-2(T, χ, ψ, r, ub) /* CF messages down*/
if self = root(T ) then

for each j ∈ children(self ) ComputeSendFunction(self , j, r);
else msg ← getMsg(); if (msg.type) = CF then NewCostFunction(msg, r);

procedure BT-DPOP-3(T, χ, ψ) /* SS messages down*/
if self = root(T ) then
sol ← ComputeSolution(∅);
for each j ∈ children(self ) do SendSolutionSeparator(self , j , sol);

else
msg ← getMsg();
if (msg.type) = SS then
sol ← ComputeSolution(msg.solsep);
for each j ∈ children(self ) do SendSolutionSeparator(self , j , sol);

procedure BT-DPOP-4(T, χ, ψ) /* BB messages first up, second down*/
if self = leaf (T ) then
LB ← minimum cluster(self ); ComputeSendBounds(self , parent(self ));

else
while ¬ (received/sent one BB per neighbor) do
msg ← getMsg(); if (msg.type) = BB then NewBounds(msg);

return (LB,
P

j∈neighbors(self ) ub[j] +
P

f∈ψ(self ) f(sol));

procedure NewCostFunction(msg, r)
functions[msg.sender ] ← msg.functions;
for each j ∈ neighbors(self ) s.t. self has not sent CF to j do

if self has received CF msg from all i ∈ neighbors(self ), i �= j then
ComputeSendFunction(self , j, r);

procedure NewSolutionSeparator(msg)
sol ← ComputeSolution(msg.solsep);
for each j ∈ children(self ) do SendSolutionSeparator(self , j);
if neighbors(self ) = {k} then
LB ← minimum cluster(self ); ComputeSendBounds(self , k);

procedure NewBounds(msg)
ub[msg.sender ] ← msg.upperBound ; LB ← max{msg.lowerBound, LB};
if thereIsSol then

for each j ∈ neighbors(self ) s.t. self has not sent BB to j do
if self has received BB msg from all i ∈ neighbors(self ), i �= j then
ComputeSendBounds(self, j);

procedure ComputeSendFunction(self , dest, r)
B ← {functions[i]|i ∈ neighbors(self ), i �= dest} S

ψ(self );
{P1...Pq} ← partition(B, r, sep(self , dest));
for each k : 1...q do
sendMsg(CF , self , dest, {(P

g∈Pk
g)[sep(self , dest) ∩ (∪g∈Pk

var(g))]});

procedure SendSolutionSeparator(self , dest)
sendMsg(SS , self , dest, {sol[x ] | x ∈ sep(self , dest)});

procedure ComputeSendBounds(self , dest)
UB ← P

j∈neighbors(self ),j �=dest ub[j ] +
P

f∈ψ(self ) f (sol);

sendMsg(BB, self , dest, UB, LB);

function ComputeSolution(vars)
thereIsSol ← true;
return assignment minimizing cluster(self ), keeping the values of vars;

Figure 4: The BT-DPOP(r) algorithm.

4. Fourth phase: after executing DPOP(value), agents have as-
signed their variables. Agent self computes a partial up-
per bound minimizing ψ(self ) but keeping the values re-
ceived in SS messages. In addition, self minimizes the set
cluster(self ) without any restriction in the value of its vari-
ables, computing a cost that is a lower bound lbself of the
optimum cost. To compute a global upper bound and take
the maximum global lower bound, information is exchanged
using BB messages. A BB message from u to v contains
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function BT-IDPOPf(T, χ, ψ, δ)
for each j ∈ neighbors(self ) do filter [j ] ← ∅;
UB ← ∞; Δ ← 0; r ← 0;
repeat

r ← r + 1;
BT-DPOPf-1(T, χ, ψ, r, UB − Δ);
if not received an empty function then
filter [j ] ← functions[j ];
if r < s then BT-DPOPf-2(T, χ, ψ, r, UB − Δ);
if not received an empty function then
BT-DPOP-3(T, χ, ψ);
if r < s then

[lbr , ubr ] ← BT-DPOP-4(T, χ, ψ);
LB ← maxk{lbk |k : 1, ..., r};
UB ← mink{ubk |k : 1, ..., r};

Δ ← UB×δ
100 ;

for each j ∈ neighbors(self ) do filter [j ] ← functions[j ];
until r = s ∨ UB − Δ ≤ LB ∨ received an empty function;
return UB ;

Figure 5: The BT-IDPOPf algorithm.

two parts: an upper bound of the cost of the global opti-
mum in the subtree rooted at u that does not include v, and
a global lower bound. When u has received BB messages
from all its neighbors except perhaps v, it adds the received
upper bounds (excluding upper bound from v) with its par-
tial upper bound, producing a new upper bound. As lower
bound, it takes the maximum between its lower bound and
the lower bound contained in the message. A new BB mes-
sage is formed containing these new upper and lower bounds,
which is sent to agent v. The process terminates when two
BB messages have been exchanged in each arc of the BT.
At every agent, the global upper bound is computed as the
sum of the partial upper bound (the sum of cost functions in
ψ(self )) with the received upper bounds. Every agent has
the same global lower lb and upper ub bounds. This algo-
rithm returns the interval [lb, ub].

Provided with the corresponding filters for CF messages com-
puted in phase 1 and phase 2, this algorithm becomes BT-DPOPf(r).
From it, we propose BT-IDPOPf, an iterative algorithm that exe-
cutes BT-DPOPf(r) with increasing r. In phase 1 of iteration r, to
filter a CF message from u to its parent v, it uses the CF message
from v to u of iteration r − 1. In phase 2 of iteration r, to filter a
CF message from v to u, it uses the CF message from u to v of it-
eration r (which has been sent in phase 1). In addition, when r = s
(the maximum separator size), only phases 1 and 3 are executed.
BT-IDPOPf appears in Figure 5, a detailed description follows:

1. First phase: as phase 1 of BT-DPOP(r), filtering a CF mes-
sage from u to v with the CF message from v to u of itera-
tion r − 1. As UB it uses the lowest ub returned at previous
iterations.

2. Second phase: if r < s, as phase 2 of BT-DPOP(r), filtering
a CF message from v to u with the CF message from u to
v of current iteration. Same UB as first phase.

3. Third phase: as phase 3 of BT-DPOP(r).

4. Fourth phase: if r < s, as phase 4 of BT-DPOP(r).

BT-IDPOPf terminates when (i) r = s, or (ii) LB = UB , or (iii)
an agent computes an empty cost function. In cases (i) and (ii), the
assignment computed at iteration r is an optimal solution and its
cost is the optimum. In case (iii), the solution is the assignment
computed at iteration r− 1. This algorithm computes the optimum
cost and terminates, as stated in the next result.

THEOREM 6. The algorithm BT-IDPOPf computes the optimum
cost, provides an optimal solution and terminates.

In fact, the termination condition (ii) is UB − UB×δ
100

≤ LB , that
is, BT-IDPOPf terminates when the computed cost UB is within
a δ percentage of the optimum, using the cost interval returned by
BT-DPOPf(r). When δ = 0, it computes the optimum cost, but
when δ > 0 the returned cost is, at most, δ percentage above the
optimum. This property allows the algorithm to stop execution be-
fore reaching the optimum. This is very useful in practice, because
many applications require to achieve good solutions (with low cost)
but they do not require to achieve the optimum (minimum) cost.
Besides, BT-IDPOPf can also be seen as an anytime algorithm, able
to improve the solution quality over time.

It is worth comparing BT-IDPOPf with the approximated DPOP
version A-DPOP [10]. They present the following differences. Each
iteration of BT-IDPOPf requires two CF messages per link (up,
down), while A-DPOP requires one UTIL per link (up). If A-DPOP
looks for the exact solution, there is no gain in the message size of
the original DPOP. However, if BT-IDPOPf looks for the exact so-
lution, large gains in message size may occur. In a hypothetical
iterative A-DPOP, there is no direct way to make messages shorter.

5. EXAMPLE
Let us consider the instance depicted in Figure 6. It is formed

by seven agents, each owning a variable. Domains are {a, b} and
binary cost functions are indicated. We provide a DFS tree of the
constraint graph and the corresponding BT.

An example of the execution of BT-IDPOPf appears in Figure
7. For r = 2 message size is limited to 22, so in some cases cost
functions have to be partitioned (BR → BV and BV → BR).
Function filtering causes no pruning, because in the first iteration
the upper bound is initialized to ∞. In phase 4, agents exchange
their partial upper bounds and global lower bounds. At the end,
each agent returns the interval [44, 45]. For r = 3 message size
is limited to 23, but this does not limit exchanged cost functions
(the size of maximum separator is 3). Now the upper bound is 45,
and function filtering causes real pruning. In Figure 7 there are
a number of cost functions for which not every value combination
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Figure 6: DCOP instance, each agent holds a variable, domains
are {a, b}, cost functions are indicated. From left to right: con-
straint graph, DFS-tree rooted at Z, the corresponding bucket
tree.
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r = 2

PHASE 1
1 2 3 4
BX → BY : f1 = fXY [−X] BY → BZ : f2 = (fY Z + f1)[−Y ] BV → BU : BU → BZ :
BS → BR : f3 = fRS [−S] BR → BV : g1 = (fZR + fRU )[−R], g2 = (fRV + f3)[−R] g3 = (fUV + g1 + g2)[−V ] g4 = (fZU + g3)[−U]

PHASE 2
5 6 7 8

BZ → BY : g5 = f6
f2 [Z] BY → BX : g7 = fY Z + g4

f1 [Y ] BV → BR : BR → BS :

BZ → BU : g6 = f2
g4 [Z] BU → BV : g8 = f8

g3 [ZU] g9 = fUV
(g1+g2), g10 = g8

(g1+g2) g11 = fZR + fRU + fRV + g9 + g10
f3 [R]

PHASE 3
9 10 11 12 13
BZ → BY : Z ← b BY → BX : Y ← b BX : X ← a BR → BS : ZUV R ← baab BS : S ← b
BZ → BU : Z ← b BU → BV : ZU ← ba BV → BR : ZUV ← baa

PHASE 4-UP
14 15 16 17
BX → BY : lb = 40, ub = 10 BY → BZ : lb = 40, ub = 18 BV → BU : lb = 44, ub = 25 BU → BZ : lb = 44, ub = 27
BS → BR : lb = 44, ub = 5 BR → BV : lb = 44, ub = 25

PHASE 4-DOWN
18 19 20 21
BZ → BY : lb = 44, ub = 27 BY → BX : lb = 44, ub = 35 BV → BR : lb = 44, ub = 20 BR → BS : lb = 44, ub = 40
BZ → BU : lb = 44, ub = 18 BU → BV : lb = 44, ub = 20
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b 10
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Y
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R

a 39
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r = 3

PHASE 1
1 2 3 4
BX → BY : h1 = fXY

g7 [−X] BY → BZ : h2 = (fY Z + h1)g5 [−Y ] BV → BU : BU → BZ :

BS → BR : h3 = fRS
g11 [−S] BR → BV : h4 = (fZR + fRU + fRV + h3)(g9+g10)[−R] h5 = (fUV + h4)g8 [−V ] h6 = (fZU + h5)g6 [−U]

PHASE 3
5 6 7 8 9
BZ → BY : Z ← a BY → BX : Y ← a BX : X ← a BR → BS : ZUV R ← aaab BS : S ← b
BZ → BU : Z ← a BU → BV : ZU ← aa BV → BR : ZUV ← aaa
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Y

a 20

b 10

h2 :

Z

a 20

b 12
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R

b 5
h4 :

Z U V
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Figure 7: Trace of BT-IDPOPf on the instance of Figure 6, for r = 2 and r = 3. Exchanged cost functions appear below. For
r = 3 phases 2 and 4 are not needed because 3 is the size of the largest separator. The optimum costs 44 and the assignment
ZYXUVRS ← aaaaabb is optimal.

appears. The missing combinations have been pruned because their
filtered cost exceeded the upper bound. Phases 2 and 4 are not
needed, because r = 3 equals the highest separator size. We have
computed the optimum (cost 44) and an optimal assignment. It
is worth noting that this execution looks for optimal solutions. If
the user accepts solutions within 5% of the optimum, BT-IDPOPf
would not have executed this iteration. Effectively, since it reported
in the previous r = 2 iteration a solution ZYXUVRS ← bbaaabb
with cost 45 which is within 5% of the optimum (computed using
the interval [44,45]), r = 3 iteration would have not been executed.

6. EXPERIMENTAL RESULTS
We tested DPOP and BT-IDPOPf on two benchmarks: random

DCOPs and distributed meeting scheduling problems. We gener-
ated random instances according to the following parameters: num-
ber of agents = number of variables, size of domains and number
of unary and binary cost functions. We randomly filled out cost
functions with costs taken from {0, . . . , 9}. An optimal solution is
to assign values to variables such that the overall cost is minimum.

We generated instances of the distributed meeting scheduling
problem considering department hierarchies [6]. Each department
consists of a set of people working in it, which have to partici-
pate in a set of meetings. An optimal solution is to schedule the
meetings in such a way that the overall cost is minimum accord-

ing to the preferences that people have of meetings and time-slots
on their own agendas. A person has multiple variables: one for
the start time of each meeting the agent takes part in. Variable do-
mains have 8 time-slots as values. All meetings last one time-slot.
There exist two meeting types: internal meetings, involving peo-
ple working on the same department, and external ones, involving
people from different departments. A person’s variables share mu-
tual exclusion constraints and variables of people involved in the
same meeting share equality constraints. Unary constraints repre-
sent personal preferences. A meeting involves at most 4 people.

Experimental results on random DCOPs are similar to those of
meeting scheduling. For space reasons we focus on meeting schedul-
ing results, that appear in Figure 8. We provide the largest message
size and the total data exchanged (in Kbytes) for DPOP, and BT-
IDPOPf for each iteration (until a termination condition is satis-
fied). We consider two scenarios: one where we accept optimal
solutions only (δ = 0%), and other where we accept solutions
which are at most 5% distant from the optimum (δ = 5%). For
each BT-IDPOPf iteration, we provide the interval [lb, ub]. When
LB is higher than or equal to UB(1− δ

100
), the computed solution

is within δ distance from the optimum so BT-IDPOPf terminates.
First, we consider optimal solutions (δ = 0%). Regarding largest

message size, BT-IDPOPf causes a substantial improvement with
respect to DPOP. Regarding total data exchanged, we observe a
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instance A B C E F G H

#participants 40 50 70 40 100 60 90

#departments 10 10 10 8 25 20 15

#meetings 15 22 24 18 52 25 32

#agents=#vars 66 96 96 80 246 144 112

#cost functions 210 340 342 324 968 570 606

largest separator 4 5 5 6 7 8 8

optimum cost 126 183 187 137 458 279 263

Algorithm Largest Total Largest Total Largest Total Largest Total Largest Total Largest Total Largest Total

message data message data message data message data message data message data message data

DPOP 16(126) 179 128(183) 461.2 128(187) 855.2 1024(137) 6363.9 8192(458) 16011.8 65536 (−) 65536 (−)
BT-IDPOPf

(r = 2) 0.3[114,135] 36.7 0.3[177,188] 56.4 0.3[175,191] 48.5 0.3[132,144] 72.4 0.3[350,516] 188.6 0.3[240,345] 155.3 0.3[235,280] 123.8

(r = 3) 2.0[121,130] 75.9 2.0[177,184] 85.3 2.0[181,191] 102.1 2.0[135,141] 109.9 2.0[429,476] 649.1 2.0[256,321] 527.0 2.0[245,266] 407.4

(r = 4) 1.4[126,126] 19.5 *4.1[182,184] *72.4 12.9[182,191] 102.9 *12.5[137,137] *87.0 16.0[431,476] 2192.9 16.0[273,302] 2120.9 16.0[257,268] 786.9

(r = 5) *0.5[183,183] *9.3 *1.4[187,187] *29.0 128.0[458,467] 5046.2 123.7[279,281] 4065.6 *67.9[262,268] *632.4

(r = 6) *17.6[458,458] *123.7 *24.0[279,279] *92.8 *821.3[262,263] *4202.4

(r = 7) *987.6(empty f) *2930.6

Savings δ = 0% 88% 26% 97% 52% 90% 67% 99% 96% 98% 49% 99% 99%

Savings δ = 5% 88% 26% 98% 69% 90% 70% 99% 97% 98% 50% 99% 99%

Figure 8: Largest message and total data transfer of DPOP and BT-IDPOPf for increasing r on meeting scheduling instances, in
Kbytes. All domains (any variable, any instance) have size 8. For DPOP, the optimum global cost appears between parenthesis ("−"
means that the algorithm execution exhausted memory before reaching the solution). For BT-IDPOPf, the lower and upper bounds
returned at each iteration appear between brackets. The user is willing to accept solutions whose cost surpasses the optimum up to
δ (δ = 0% means optimum only). With asterisk (*) we denote iterations that are executed for δ = 0% but not for δ = 5%.

similar picture: BT-IDPOPf requires exchanging far less data than
DPOP. In fact, there are two instances that cannot be solved by
DPOP (instances G and H, our simulator cannot handle messages
of size 65536 Kbytes), which is solved by BT-IDPOPf using much
shorter messages. Considering MB-DPOP, the bounded memory
version of DPOP [11], reduction in message size is limited to Θ(dr),
which would cause messages of size 0.25Kb, 2Kb, 16Kb, 128Kb,
1024Kb, 8192Kb, 65536Kb, for r = 2, 3, 4, 5, 6, 7, 8 respectively.
However, BT-IDPOPf uses messages of the same size for low r
but shorter for high r (see Figure 8). For the total data exchanged,
MB-DPOP requires more data than DPOP (Figure 3 of [11]), but
BT-IDPOPf requires less data than DPOP.

Secondly, if we allow for a solution with a cost within 5% of the
optimum, benefits increase because the termination condition on
bounds becomes looser: it passes from LB = UB to LB ≥ UB ×
95
100

. For many problem instances, BT-IDPOPf stops before com-
puting the optimum, saving several iterations for the highest values
of r (the most expensive ones), which represents further savings in
communication and computation. Regarding largest message size,
BT-IDPOPf savings with respect to DPOP are really good. Regard-
ing total data exchanged, a similar picture appears: BT-IDPOPf
exchanges much less data than DPOP. It is really illustrative to ob-
serve the capacity of reasoning with bounds, able to stop execution
when bounds are close enough and, in many cases, saving some of
the most costly iterations (marked with * in Figure 8).

7. CONCLUSIONS
We have improved the DPOP algorithm with cost function fil-

tering. In practice, we obtain substantial reductions in maximum
message size and total data exchanged. These benefits are signif-
icant for low w∗ but increase as w∗ increases, reaching orders of
magnitude savings. Our approach provides a bounded interval of
costs, which allows us to stop execution when the cost of the cur-
rent solution is not more than a percentage away from the optimum.
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